Authors: Edward S. Spang and Frank J. Loge
Publication: Journal of Industrial Ecology – March 2015
Article Link
Abstract: Using data from the water service area of the East Bay Municipal Utility District in Northern California, we develop and discuss a method for assessing, at a high resolution, the energy intensity of water treated and delivered to customers of a major metropolitan water district. This method extends previous efforts by integrating hourly data from supervisory control and data acquisition systems with calculations based on the actual structure of the engineered infrastructure to produce a detailed understanding of energy use in space and time within the territory of a large-scale urban water provider. We found significant variations in the energy intensity of delivered potable water resulting from seasonal and topographic effects. This method enhances our understanding of the energy inputs for potable water systems and can be applied to the entire delivery and postuse water life cycle. A nuanced understanding of water’s energy intensity in an urban setting enables more intelligent, targeted efforts to jointly conserve water and energy resources that take seasonal, distance, and elevation effects into account.